TWO-PHASE FLOW AND HEAT .TRANSFER IN BOUNDARY
LAYER OF A THIN BODY OF REVOLUTION
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The effect of transverse curvature of a body and of the amount of injection on flow and heat
transfer in a two-phase boundary layer of a thin parabolic body of revolution is investigated.

It is well known that injection and suction have a significant effect on flow and heat transfer, Of par-
ticular interest is the problem of injection into a boundary layer of a medium which is different in physical
properties from the incoming flow. In particular, this interest derives from the possibility of considerable
reduction in the resistance of a body by introduction into the contact region of the boundary layer of mate-
rials of low density and viscosity in comparison with the fluid in which the moving body is submerged,

Double-layer flow around plane bodies was studied [1] as well as two-phase heat exchange between
slabs [2].

We consider the problem of streamline flow and heat transfer for a slightly heated thin body of revo-
lution in a flow of Newtonian fluid which is parallel to the axis of the body. We assume that gas is dis-
charged normally to the oncoming flow at the surface of the body of revolution. We assume there is a
stable interface. For thin bodies of revolution, one can neglect the longitudinal pressure gradient induced
by the body. Then the system of equations for an established incompressible two-phase boundary layer in
a rectangular coordinate system associated with the contour of the body takes the form
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Here and below, i =1, 2. We use the subscript 1 for the internal region and the subscript 2 for the ex-
ternal region,
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Fig. 1. Surface shear stress (a) and surface heattransfer
(b): 1) A; =0.2, Ay =0.05; 2) Ay =2.0, Ay =0.5; 3) Ay
= 8.0, A2 = 2.0.

We transform the system (1)-(6) by means of new independent ‘and dependent variables
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After the transformation and calculations similar to those in [3], we find that the conditions providing
a self-similar solution will be
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and the system of equations reduces to the form
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and at the interface (ny =ng; ny = 0)
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We note that the curvature parameters Ay and A, are interrelated. Indeed, taking the ratio of A to
A, we find from Eq. (8) that

A="514,

O

A numerical solution of the system (9)-(13) was obtained by the method proposed in 1] for I' = 0,005,
F =0.01, Pry = 0.7, Pr; = 7.0, —0,01 = f, = —0.3.

The exact solutions obtained make it possible to calculate the local coefficient of friction cf and the
local Nusselt number:
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Figure 1 reveals the possibility of considerable reduction in surface shear stress and heat transfer
at relatively low rates of gas injection. Figure 1 also indicates that an increase in transverse curvature
of the body leads to an increase in surface shear and intensifies heat transfer.

» NOTATION
X is the coordinate calculated along the body generating line;
y is the coordinate along the normal to the body;
uandv are the velocity vector components along the axes x and y;
r =ryx) +ycosa is the distance from the body axis to some point at the boundary layer;
To(x) is the equation of bedy contour;
a is the angle between the tangential line to the body contour and the axis of the body;
T is the absolute temperature;
v and p are the kinematic and dynamic viscosity coefficients;
A . is the thermal conductivity;
fs) is the density;
a is the thermal diffusivity;
«a is the heat transfer coefficient;
Pr =v/a _ is the Prandtl number;
¥ is the stream function;
0 is the internal boundary layer thickness;
boo is the conventional thickness of the external boundary layer;
c and ¢4 are constants;
L is the characteristic dimension;
Re = UL/v is the Reynolds number.
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