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The effect  of t r a n s v e r s e  curva ture  of a body and of the amount of injection on flow and heat  
t r a n s f e r  in a two-phase  boundary l aye r  of a thin parabol ic  body of revolution is invest igated.  

It is well  known that injection and suction have a significant effect  on flow and heat t r a n s f e r .  Of p a r -  
t icular  i n t e re s t  is the p rob lem of injection into a boundary l aye r  of a med ium which is different  in physical  
p r o p e r t i e s  f r o m  the incoming flow. In pa r t i cu l a r ,  this in te res t  de r ives  f rom the poss ibi l i ty  of cons iderable  
reduction in the r e s i s t ance  of a body by introduction into the contact  region of the boundary l ayer  of m a t e -  
r i a l s  of low density and v iscos i ty  in compar i son  with the fluid in which the moving body is  submerged .  

Double - l aye r  flow around plane bodies  was studied [1] as well  as  two-phase  heat  exchange between 
s labs  [2]. 

We cons ider  the p rob lem of s t r eaml ine  flow and heat  t r a n s f e r  for  a sl ightly heated thin body of r evo -  
lution in a flow of Newtonian fluid which is pa ra l l e l  to the axis  of the body. We a s sume  that gas is d i s -  
charged  normal ly  to the oncoming flow at  the sur face  of the body of revolution.  We a s sume  there  is a 
s table in te r face .  F o r  thin bodies  of revolution,  one can neglect  the longitudinal p r e s s u r e  gradient  induced 
by the body. Then the s y s t em  of equations for  an es tab l i shed  incompress ib le  two-phase  boundary l ayer  in 
a r ec tangu la r  coordinate  s y s t em  assoc ia t ed  with the contour of the body takes  the f o r m  
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The boundary conditions at  the wall  a r e  

we have at infinity 

and at the in te r face  (y = 5) 

Here  and below, i = 1, 2. 
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We use the subscr ip t  1 for  the in ternal  region and the subsc r ip t  2 for  the ex-  

(4) 

(5) 

(6) 

Insti tute of Heat and Mass T r a n s f e r  of the Academy of Sciences of the Be to russ ian  SSR, Minsk. 
T rans la t ed  f r o m  Inzhenerno-Fiz ichesk i i  Zhurnal,  Vol. 26, No. 6, pp. 991-994, June, 1974. Original  
a r t i c l e  submit ted May 16, 1973. 

�9 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of  this publication may be reproduced, 
stored in a retrieval O,stem, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, 
recording or otherwise, without written permission o f  the publisher. A copy o f  this article is available from the publisher for $15.00. 

686 



rf,"(o) 

oi 

4os 

a 

a qf o 

-~oi(o) 

4# #2 -fo 
Fig .  1. Sur face  s h e a r  s t r e s s  (a) and s u r f a c e  h e a t t r a n s f e r  
(b): 1) A I = 0 . 2 ,  A 2 = 0 . 0 5 ;  2) A 1 = 2 . 0 ,  A 2 = 0 . 5 ;  3) A l 
= 8.0, A 2 = 2.0. 

We t r a n s f o r m  the s y s t e m  (1)-(6) by  m e a n s  of new independent  and dependent  v a r i a b l e s  
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A f t e r  the t r a n s f o r m a t i o n  and ca l cu l a t i ons  s i m i l a r  to those  in [3], we find that  the condi t ions  p rov id ing  
a s e l f - s i m i l a r  so lu t ion  wil l  be  
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and the s y s t e m  of equa t ions  r e d u c e s  to the f o r m  
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f o r  b o u n d a r y  condi t ions  a t  the wal l  

at infinity 

and a t  the i n t e r f a c e  (771 = ~/6; ~2 = 0) 
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We note that the curva ture  pa r ame te r s  A i and A~ are  interre la ted.  Indeed, taking the rat io of A I to 
A 2 we find f rom Eq. (8) that 

& = P~, rA,. 
Pl 

A numerical solution of the system (9)-(13) was obtained by the method proposed in [1] for F = 0.005, 
F = 0.01, P r  i = 0.7, P r  2 = 7.0, --0.01 >_ f0 > -0 .3 .  

The exact solutions obtained make it possible to calculate the local coefficient of fr ict ion cf and the  
local Nusselt  number: 
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Figure 1 reveals  the possibil i ty of considerable reduction in surface shear  s t r e ss  and heat t r ans fe r  
at  relat ively tow ra tes  of gas injection. Figure 1 also indicates that an increase  in t r ansverse  curvature  
of the body leads to an increase  in surface shear  and intensifies heat t ransfer .  
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NOTATION 

is the coordinate calculated along the body generat ing line; 
is the coordinate along the normal  to the body; 
are  the velocity vector  components along the axes x and y; 
is the distance f rom the body axis to some point at the boundary layer ;  
is the equation of body contour;  
is the angle between the tangential line to the body contour and the axis of the body; 
is the absolute tempera ture ;  
are  the kinematic and dynamic viscosi ty  coefficients;  
is the thermal  conductivity; 
is the densi ty;  
is the thermal  diffusivity; 
is the heat t ransfer  coefficient; 
is the Prandtl  number;  
is the s t ream function; 
is the internal boundary layer  thickness;  
~s the conventional thickness of the external  boundary layer ;  
a re  constants;  
is the charac te r i s t i c  dimension; 
is the Reynolds number.  
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